

Medical chemistry- year1

Chemical bonding

Lecture 2 (part1)

By Assis.Teacher. Rana Hassan Basic Of Science College Of Dentistry University Of Basrah

Objectives

- 1- definition of chemical bond and Valence electrons
- 2- types of chemical bonding
- 3- properties of ionic compounds
- 4-properties of covalent compounds
- 5- type of covalent bonds
- 6-Metallic bonds
- 7- Properties of Metallic bonds

definition

Chemical Bonding- mutual electrical attraction between the nuclei and valence electrons of different atoms that bind the atoms together .

Valence electrons- outer most electrons that are available to be lost ,gained or shared to from a chemical bond.

•All atoms trying to achieve a stable octet.

Chemical Bond

A force that holds groups of 2 or more atoms together and makes them function as unit

Atom- smallest unit of an element

Molecule- group of covalently bonded atoms

Types chemical Bonding three major types of bonding

Ionic Bonds(Compounds) Covalent Bonds (molecules) Metallic Bonds

Ionic Bonds

- •Electrons are transferred between valence shells of atoms
- ionic compounds are made of ions
- ionic compounds are called salts or crystals
- always formed between matals and non-metals

non- metals — → gained e -

Ionic Bonds

Lose an electron Atom is Positive

Gain an electron Atom is Negative

Positive Ion is called Cation

Negative Ion is called Anion

Ionic Compounds

The Periodic Table of the Elements

H J Li Ma	4 Be heiter		Meta	ls	Metalloids			Non-Metals				\$ B 13 Al	6 C Catal 14 Si	7 N 15 P	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 F 17 Cl	2 He 10 Ne 18 Ar
19 K	20 Ca	21 Se	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI Tedar	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110	111	112	113	114				

A classic example of ionic bonding is between Na and Cl.Na is a silvery metal. It has 1 valence electon.Cl is a yellow- green gas, and it needs 1 electron to fill its valence shell. If you put the gas and the metal together ,then they will burn as electrons are exchanged .the metal dissolves and the gas disappears . The ions now have oppsite charges and are attracted to each other by electrostatic forces. They form a crystal with the rock salt structure.

 $Na + CI \rightarrow Na^+ + CI^- \rightarrow NaCI$

11: Na / 1S₂ 2S₂ 2P₆ 3S₁ \longrightarrow Na⁺ / 1S₂ 2S₂ 2P₆ 17: Cl / 1S₂ 2S₂ 2P₆ 3S₂ 3P₅ \longrightarrow Cl⁻ / 1S₂ 2S₂ 2P₆ 3S₂ 3P₆

Properties of Ionic Compounds

- hard solid at 22°C.
- •high mp temperatures .
- nonconductors of electricity in solid phase.

 good conductors in liquid phase or dissolved in water (aq).